
Package: distreg.vis (via r-universe)
August 22, 2024

Type Package

Title Framework for the Visualization of Distributional Regression
Models

Version 1.7.5

Maintainer Stanislaus Stadlmann <stanislaus@stadlmann.cm>

Depends R (>= 3.5.0)

Imports stats, utils, methods, shiny (>= 1.0.3), bamlss (>= 0.1-2),
gamlss (>= 5.0-6), gamlss.dist (>= 5.1-0), ggplot2 (>= 2.2.1),
rhandsontable (>= 0.3.4), magrittr (>= 1.5), formatR (>= 1.5),
betareg (>= 3.1-2)

Suggests testthat, gridExtra, glogis

Description Functions for visualizing distributional regression models
fitted using the 'gamlss', 'bamlss' or 'betareg' R package. The
core of the package consists of a 'shiny' application, where
the model results can be interactively explored and visualized.

License GPL-3

LazyData TRUE

URL https://github.com/Stan125/distreg.vis

BugReports https://github.com/Stan125/distreg.vis/issues

RoxygenNote 7.2.3

Repository https://stan125.r-universe.dev

RemoteUrl https://github.com/stan125/distreg.vis

RemoteRef HEAD

RemoteSha b3c7ce64f634c25b88ea3794ed2984034520d1f2

Contents
distreg.vis . 2
distreg_checker . 3
dists . 3

1

https://github.com/Stan125/distreg.vis
https://github.com/Stan125/distreg.vis/issues

2 distreg.vis

model_data . 4
model_fam_data . 5
moments . 6
plot_dist . 8
plot_moments . 10
preds . 12
search_funs . 13
set_mean . 13
vis . 14

Index 15

distreg.vis distreg.vis: Interactively visualizing distributional regression models

Description

The package distreg.vis is a framework for the visualization of distributional regression models
estimated with the R packages bamlss, gamlss and betareg. Current supported model classes can
be found under distreg_checker.

Details

The main functions are:

• vis(): Starts the Graphical User Interface.

• moments(): Obtain predicted moments of the target distribution based on user-specified values
of the explanatory variables.

• plot_dist(): Create a graph displaying the predicted probability density function or cumu-
lative density function based on the same user-specified values.

• plot_moments(): View the marginal influence of a selected effect on the predicted moments
of the target distribution.

To get a feel for the main capabilities of distreg.vis, you can run the examples or the demo called
vis-demo.R which fits a couple of distributional regression models and then calls the Graphical
User Interface.

For the main functions, certain target distributions from both bamlss and gamlss are supported.
Check the distreg.vis::dists dataset to find out which distributions are supported for plot_dist()
(column implemented) and which are also supported for plot_moments() (column moment_funs).

To make the process of interpreting fitted distributional regression models as easy as possible,
distreg.vis features a rich Graphical User Interface (GUI) built on the shiny framework. Using
this GUI, the user can (a) obtain an overview of the selected model fit, (b) easily select explanatory
values for which to display the predicted distributions, (c) obtain marginal influences of selected
covariates and (d) change aesthetical components of each displayed graph. After a successful anal-
ysis, the user can quickly obtain the R code needed to reproduce all displayed plots, without having
to start the application again.

Maintainer:

distreg_checker 3

• Stanislaus Stadlmann, <stadlmann@uni-goettingen.de>

distreg_checker Check if model class is supported

Description

This function is a quick way to find out whether a specific model class is supported.

Usage

distreg_checker(x)

Arguments

x Model object or model object in quoted form, e.g. "mymodel"

Details

This function is one of the cornerstones of distreg.vis. It decides which models are supported. All
core functions of this package call distreg_checker multiple times. So, if a model class is support
here, it is supported in the whole package.

At the moment, the following model classes are supported:

• gamlss

• bamlss

• betareg from betareg

• betatree from betareg

dists Information about supported and not yet supported distribution fami-
lies

Description

A dataset containing all of bamlss’ exported and gamlss.dist families. This is the backbone of the
package; whether you can use a distributional family or not depends on this dataset. Since 1.7.0
family betareg from the betareg package is also supported.

Usage

dists

Format

An object of class data.frame with 125 rows and 8 columns.

4 model_data

Details

This data.frame object contains one row for each distribution, and columns with the following
content:

• dist_name: Name of the distribution.

• class: Either "bamlss" or "gamlss" detailing from which package the target distribution
comes from.

• implemented: Is this distribution generally usable for plot_dist(), and was this usage al-
ready tested?

• moment_funs: Are functions implemented with which to calculate the moments of the dis-
tribution, given the parameters? This column is especially relevant for plot_moments(), in
which the predicted moments are displayed.

• type_limits: Details the range the values from the distribution can have. Can be "both_limits",
"one_limit", "no_limit" and "cat_limit" (for categorical distributions).

• l_limit, u_limit: Integers detailing where the limits of the distributions lie.

• type: Character string for the type of distribution. Can be "Discrete", "Continuous", "Mixed"
and "Categorical".

Examples

Find out which GAMLSS or BAMLSS families are supported

dists_char <- dists[dists$moment_funs, c("dist_name", "class")]

GAMLSS families
dists_char[dists_char$class == "gamlss", "dist_name"]

BAMLSS families
dists_char[dists_char$class == "bamlss", "dist_name"]

model_data Model data getter

Description

Get the data with which the distributional regression model of interest was estimated (see dis-
treg_checker for a list of supported object classes). By default, only explanatory variables are
returned.

Usage

model_data(model, dep = FALSE, varname = NULL, incl_dep = FALSE)

model_fam_data 5

Arguments

model A gamlss or bamlss object.

dep If TRUE, then only the dependent variable is returned.

varname Variable name in character form that should be returned. If this is specified, only
the desired variable is returned.

incl_dep Should the dependent variable be included?

Value

A data.frame object if dep or varname is not specified, otherwise a vector.

Examples

library("betareg")

Get some data
beta_dat <- model_fam_data(fam_name = "betareg")

Estimate model
betamod <- betareg(betareg ~ ., data = beta_dat)

Get data
model_data(betamod)

model_fam_data Create a dataset to fit models with all possible families in distreg pack-
ages

Description

Create a dataset to fit models with all possible families in distreg packages

Usage

model_fam_data(nrow = 500, seed = 1408, fam_name = "NO")

Arguments

nrow Number of observations of the exported dataset.

seed The seed which should be used, for reproducibility.

fam_name The name of the distribution family to which the first dimension of the uniform
distribution should be transformed to.

6 moments

Details

This function creates a 3-dimensional uniform distribution (with support from 0 to 1) which has a
cross-correlation of 0.5. Then the first dimension is transformed into a specified distribution (argu-
ment fam_name) via Inverse Transform Sampling https://en.wikipedia.org/wiki/Inverse_
transform_sampling. The other two dimensions are transformed into a normal distribution (norm2)
and a binomial distribution (binomial1, for testing categorical explanatory covariates). This proce-
dure ensures that there is a dependency structure of the transformed first distribution and the other
two.

Value

A data.frame with columns for differently distributed data.

Examples

Beta distributed random values
model_fam_data(nrow = 500, fam_name = "BE")

moments Compute distributional moments from the parameters

Description

This function takes (predicted) parameters of a response distribution and calculates the correspond-
ing distributional moments from it. Furthermore, you can specify own functions that calculate
measures depending on distributional parameters.

Usage

moments(par, fam_name, what = "mean", ex_fun = NULL)

Arguments

par Parameters of the modeled distribution in a data.frame form. Can be Output of
preds, for example.

fam_name Name of the used family in character form. Can be one of distreg.vis::dists$dist_name.
All gamlss.dist and exported bamlss families are supported. To obtain the family
from a model in character form, use fam_obtainer.

what One of "mean", "upperlimit", "lowerlimit". If it is mean (which is also
the default), then the mean of the parameter samples is calculated. 2.5 for
lowerlimit and upperlimit, respectively.

ex_fun An external function function(par) {...} which calculates a measure, whose
dependency from a certain variable is of special interest.

https://en.wikipedia.org/wiki/Inverse_transform_sampling
https://en.wikipedia.org/wiki/Inverse_transform_sampling

moments 7

Details

With the exception of betareg, the distributional families behind the estimation of the distributional
regression models are represented by own objects, e.g. GA or lognormal_bamlss. We worked
together with both the authors of gamlss and bamlss such that the functions to compute the moments
from the parameters of the underlying distribution is already implemented in the family functon
itself. As an example, try out gamlss.dist::BE()$mean, which shows one example. The function
moments() utilizes this fact and ensures that the outcome is always in the right format: Two columns
named ‘Expected_Value‘ and ‘Variance‘ detailing the first two moments. One exception appears
when an external function is specified, at which point there are three columns.

Each row details one ‘scenario‘ meaning one covariate combination for which to predict the mo-
ments. moments() is heavily used in plot_moments, where moments are calculated over the entire
range of one variable.

If target distribution stems from a bamlss model, moments() can also utilize the samples from the
preds function to transform them. This is important for correct estimates, as just taking the mean
of the samples and then using those means to estimate the moments can lead to inaccurate results.
moments() knows when samples of predicted parameters were specified in the par argument, and
then transforms the samples to the moments, before taking averages. Only through this procedure
we even get credible intervals for the expected moments (see "upperlimit" and "lowerlimit" as pos-
sible outcomes of argument what).

Examples

Get some artificial data
gamma_data <- model_fam_data(fam_name = "gamma", nrow = 100)

Estimate model
library("bamlss")
model <- bamlss(list(gamma ~ norm2 + binomial1,

sigma ~ norm2 + binomial1),
data = gamma_data,
family = gamma_bamlss())

Get some predicted parameters in sample and without sample form
pred_params <- preds(model, vary_by = "binomial1")
pred_params_samples <- preds(model, vary_by = "binomial1", what = "samples")

Now calculate moments - with samples more correct estimates come out
moments(pred_params, fam_name = "gamma", what = "mean")
moments(pred_params_samples, fam_name = "gamma", what = "mean")

Now with specifying an external function
my_serious_fun <- function(par) {

return(par[["mu"]] + 3*par[["sigma"]])
}
moments(pred_params_samples,

what = "mean",
fam_name = "gamma",
ex_fun = "my_serious_fun")

8 plot_dist

plot_dist Plot predicted distributional regression models

Description

This function plots the parameters of a predicted distribution (e.g. obtained through preds) with
ggplot2. You can use all supported distributional regression model classes (check details of dis-
treg_checker) as well as all supported distributional families (available at dists).

Usage

plot_dist(
model,
pred_params = NULL,
palette = "viridis",
type = "pdf",
rug = FALSE,
vary_by = NULL,
newdata = NULL

)

Arguments

model A fitted distributional regression model object. Check distreg_checker to see
which classes are supported.

pred_params A data.frame with rows for every model prediction and columns for every pre-
dicted parameter of the distribution. Is easily obtained with the distreg.vis
function preds.

palette The colour palette used for colouring the plot. You can use any of the ones
supplied in scale_fill_brewer though I suggest you use one of the qualitative
ones: Accent, Dark2, etc. Since 0.5.0 "viridis" is included, to account for
colour blindness.

type Do you want the probability distribution function ("pdf") or the cumulative dis-
tribution function ("cdf")?

rug If TRUE, creates a rug plot

vary_by Variable name in character form over which to vary the mean/reference values
of explanatory variables. It is passed to set_mean. See that documentation for
further details.

newdata A data.frame object being passed onto preds. You can do this if you don’t
want to specify the argument pred_params directly. If you specify newdata,
then preds(model, newdata = newdata) is going to be executed to be used as
pred_params.

plot_dist 9

Details

To get a feel for the predicted distributions and their differences, it is best to visualize them. In
combination with the obtained parameters from preds, the function plot_dist() looks for the
necessary distribution functions (probability density function or cumulative distribution function)
from the respective packages and then displays them graphically.

After plot_dist() has received all necessary arguments, it executes validity checks to ensure the
argument’s correct specification. This includes controlling for the correct model class, checking
whether the distributional family can be used safely and whether cdf or pdf functions for the mod-
eled distribution are present and ready to be graphically displayed. If this is the case, the internal
fam_fun_getter is used to create a list with two functions pointing to the correct pdf and cdf func-
tions in either the gamlss or bamlss namespace. The functions for betareg are stored in distreg.vis.

Following a successful calculation of the plot limits, the graph itself can be created. Internally, dis-
treg.vis divides between continuous, discrete and categorical distributions. Continuous distributions
are displayed as filled line plots, while discrete and categorical distributions take bar graph shapes.

For plotting, distreg.vis relies on the ggplot2 package (Wickham 2016). After an empty graph is
constructed, the previously obtained cdf or pdf functions are evaluated for each predicted parameter
combination and all values inside the calculated plot limits.

Value

A ggplot2 object.

References

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.org.

Examples

Generating data
data_fam <- model_fam_data(fam_name = "BE")

Fit model
library("gamlss")
beta_model <- gamlss(BE ~ norm2 + binomial1,

data = data_fam, family = BE())

Obtains all explanatory variables and set them to the mean, varying by binomial1
(do this if you do not want to specify ndata of preds by yourself)
ndata <- set_mean(model_data(beta_model), vary_by = "binomial1")

Obtain predicted parameters
param_preds <- preds(beta_model, newdata = ndata)

Create pdf, cdf plots
plot_dist(beta_model, param_preds, rug = TRUE)
plot_dist(beta_model, param_preds, type = "cdf")
plot_dist(beta_model, param_preds, palette = 'default')

https://ggplot2.tidyverse.org

10 plot_moments

You can also let plot_dist do the step of predicting parameters of the mean explanatory variables:
plot_dist(beta_model, pred_params = NULL, vary_by = 'binomial1')

plot_moments Plot function: Display the influence of a covariate

Description

This function takes a dataframe of predictions with one row per prediction and one column for every
explanatory variable. Then, those predictions are held constant while one specific variable is varied
over it’s whole range (min-max). Then, the constant variables with the varied interest variables are
predicted and plotted against the expected value and the variance of the underlying distribution.

Usage

plot_moments(
model,
int_var,
pred_data = NULL,
rug = FALSE,
samples = FALSE,
uncertainty = FALSE,
ex_fun = NULL,
palette = "viridis",
vary_by = NULL

)

Arguments

model A fitted model on which the plots are based.

int_var The variable for which influences of the moments shall be graphically displayed.
Has to be in character form.

pred_data Combinations of covariate data, sometimes also known as "newdata", including
the variable of interest, which will be ignored in later processing.

rug Should the resulting plot be a rug plot?

samples If the provided model is a bamlss model, should the moment values be "cor-
rectly" calculated, using the transformed samples? See details for details.

uncertainty If TRUE, displays uncertainty measures about the covariate influences. Can only
be TRUE if samples is also TRUE.

ex_fun An external function function(par) {...} which calculates a measure, whose
dependency from a certain variable is of interest. Has to be specified in character
form. See examples for an example.

palette See plot_dist.

vary_by Variable name in character form over which to vary the mean/reference values
of explanatory variables. It is passed to set_mean. See that documentation for
further details.

plot_moments 11

Details

The target of this function is to display the influence of a selected effect on the predicted moments of
the modeled distribution. The motivation for computing influences on the moments of a distribution
is its interpretability: In most cases, the parameters of a distribution do not equate the moments and
as such are only indirectly location, scale or shape properties, making the computed effects hard to
understand.

Navigating through the disarray of link functions, non-parametric effects and transformations to
moments, plot_moments() supports a wide range of target distributions. See dists for details.

Whether a distribution is supported or not depends on whether the underlying R object possesses
functions to calculate the moments of the distribution from the predicted parameters. To achieve this
for as many distributional families as possible, we worked together with both the authors of gamlss
(Rigby and Stasinopoulos 2005) and bamlss (Umlauf et al. 2018) and implemented the moment
functions for almost all available distributions in the respective packages. The betareg family was
implemented in distreg.vis as well.

References

Rigby RA, Stasinopoulos DM (2005). "Generalized Additive Models for Location, Scale and
Shape." Journal of the Royal Statistical Society C, 54(3), 507-554.

Umlauf, N, Klein N, Zeileis A (2018). "BAMLSS: Bayesian Additive Models for Location, Scale
and Shape (and Beyond)." Journal of Computational and Graphical Statistics, 27(3), 612-627.

Examples

Generating some data
dat <- model_fam_data(fam_name = "LOGNO")

Estimating the model
library("gamlss")
model <- gamlss(LOGNO ~ ps(norm2) + binomial1,

~ ps(norm2) + binomial1,
data = dat, family = "LOGNO")

Get newdata by either specifying an own data.frame, or using set_mean()
for obtaining mean vals of explanatory variables
ndata_user <- dat[1:5, c("norm2", "binomial1")]
ndata_auto <- set_mean(model_data(model))

Influence graphs
plot_moments(model, int_var = "norm2", pred_data = ndata_user) # cont. var
plot_moments(model, int_var = "binomial1", pred_data = ndata_user) # discrete var
plot_moments(model, int_var = "norm2", pred_data = ndata_auto) # with new ndata

If pred_data argument is omitted plot_moments uses mean explanatory
variables for prediction (using set_mean)
plot_moments(model, int_var = "norm2")

Rug Plot
plot_moments(model, int_var = "norm2", rug = TRUE)

12 preds

Different colour palette
plot_moments(model, int_var = "binomial1", palette = "Dark2")

Using an external function
ineq <- function(par) {

2 * pnorm((par[["sigma"]] / 2) * sqrt(2)) - 1
}
plot_moments(model, int_var = "norm2", pred_data = ndata_user, ex_fun = "ineq")

preds Predict parameters of a distreg models’ target distribution

Description

This function takes a fitted model and a dataframe with explanatory variables and a column for the
intercept to compute predicted parameters for the specified distribution. Without worrying about
class-specific function arguments, preds() offers a consistent way of obtaining predictions based
on specific covariate combinations.

Usage

preds(model, newdata = NULL, what = "mean", vary_by = NULL)

Arguments

model A fitted distributional regression model object. Check supported classes at dis-
treg_checker.

newdata A data.frame with explanatory variables as columns, and rows with the combi-
nations you want to do predictions for. Furthermore, whether or not to include
the intercept has to be specified via a logical variable intercept. If omitted, the
average of the explanatory variables is used (see set_mean).

what One of "mean" or "samples". The default for bamlss models is "samples",
while the default for gamlss models is "mean". This argument changes how the
mean of the parameter is calculated. See details for details.

vary_by Variable name in character form over which to vary the mean/reference values
of explanatory variables. It is passed to set_mean. See that documentation for
further details.

Value

A data.frame with one column for every distributional parameter and a row for every covariate
combination that should be predicted.

search_funs 13

Examples

Generating data
data_fam <- model_fam_data(fam_name = "BE")

Fit model
library("gamlss")
beta_model <- gamlss(BE ~ norm2 + binomial1,

data = data_fam, family = BE())

Get 3 predictions
ndata <- data_fam[sample(1:nrow(data_fam), 3), c("binomial1", "norm2")]
preds(model = beta_model, newdata = ndata)

If newdata argument is omitted preds uses the means of the explanatory variables
preds(model = beta_model, newdata = NULL) # this gives the same results as ...
preds(model = beta_model, newdata = set_mean(model_data(beta_model))) # ...this

search_funs function Searcher

Description

Function that looks for objects of class ’function’ in the working directory.

Usage

search_funs()

set_mean Obtain mean values and reference categories of variables in a
data.frame

Description

This function purely exists for the set_mean argument of plot_moments. It takes a data.frame and
obtains the mean values (numeric variables) and reference categories (categorical covariates).

Usage

set_mean(input, vary_by = NULL)

Arguments

input A data.frame object

vary_by A character string with the name of a variable over which the output dataframe
should vary.

14 vis

Value

A data.frame object with one row

Examples

library("betareg")

Get some data
beta_dat <- model_fam_data(fam_name = "betareg")

Estimate model
betamod <- betareg(betareg ~ ., data = beta_dat)

Obtain explanatory variables and set to mean
set_mean(model_data(betamod))
set_mean(model_data(betamod), vary_by = "binomial1")

vis distreg.vis function

Description

Function to call the distreg.vis Shiny App which represents the core of this package.

Usage

vis()

Examples

library("gamlss")
library("bamlss")
A gamlss model
normal_gamlss <- gamlss(NO ~ binomial1 + ps(norm2),

sigma.formula = ~ binomial1 + ps(norm2),
data = model_fam_data(),
trace = FALSE)

Start the App - only in interactive modes
if (interactive()) {
distreg.vis::vis()
}

Index

∗ datasets
dists, 3

bamlss, 3, 7, 9, 11
betareg, 3, 7, 9, 11
betatree, 3

distreg.vis, 2, 3, 9, 11
distreg_checker, 2, 3, 4, 8, 12
dists, 3, 8, 11

fam_fun_getter, 9
fam_obtainer, 6

GA, 7
gamlss, 3, 7, 9, 11
ggplot2, 9

lognormal_bamlss, 7

model_data, 4
model_fam_data, 5
moments, 6

plot_dist, 8, 10
plot_moments, 7, 10, 13
preds, 6–9, 12

scale_fill_brewer, 8
search_funs, 13
set_mean, 8, 10, 12, 13

vis, 14

15

	distreg.vis
	distreg_checker
	dists
	model_data
	model_fam_data
	moments
	plot_dist
	plot_moments
	preds
	search_funs
	set_mean
	vis
	Index

